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Abstract: Coordinated multi-robot navigation is essential for robots to operate as a
team in diverse environments. During navigation, robot teams usually need to main-
tain specific formations, such as circular formations to protect human teammates at
the center. However, in complex scenarios such as narrow corridors, rigidly preserv-
ing predefined formations can become infeasible. Therefore, robot teams must be
capable of dynamically splitting into smaller subteams and adaptively controlling
the subteams to navigate through such scenarios while preserving formations. To
enable this capability, we introduce a novel method for SubTeaming and Adaptive
Formation (STAF), which is built upon a unified hierarchical learning framework:
(1) high-level deep graph cut for team splitting, (2) intermediate-level graph learn-
ing for facilitating coordinated navigation among subteams, and (3) low-level
policy learning for controlling individual mobile robots to reach their goal positions
while avoiding collisions. To evaluate STAF, we conducted extensive experiments
in both indoor and outdoor environments using robotics simulations and physical
robot teams. Experimental results show that STAF enables the novel capability for
subteaming and adaptive formation control, and achieves promising performance
in coordinated multi-robot navigation through challenging scenarios. More details
are available on the project website: https://anonymous188.github.io/STAF/.

Keywords: Coordinated multi-robot navigation, subteam, hierarchical learning.

1 Introduction

Multi-robot systems have attracted growing at-
tention due to their advantages, such as redun-
dancy [1], parallelism [2], and scalability [3].
Coordinated multi-robot navigation is a funda-
mental capability that allows teams of robots to
traverse environments in a synchronized manner
and reach goal positions collectively [4]. This
capability is crucial in real-world applications,
such as search and rescue [5, 6, 7], space explo-
ration [8, 9], and transportation [10, 11].

During coordinated navigation, robots are often
required to maintain mission-specific formation,
such as circular formations for protection or line
formations for coverage. However, rigid adher-
ence to predefined formations can hinder effec-

Figure 1: When a robot team in circular formation
encounters a bridge that is too narrow for the entire
team to cross at once. The robots must divide into
subteams, adapt their formations to navigate the
bridge, and recovery the full team after crossing.

tive navigation in certain scenarios. For instance, Figure 1 depicts a team of ten robots in a circular
formation encountering a corridor too narrow for the entire team to pass through. Thus, the team must
be capable of dynamically dividing into smaller units that operate both independently and cohesively

Submitted to the 9th Conference on Robot Learning (CoRL 2025). Do not distribute.


https://anonymous188.github.io/STAF/

39
40

41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63

64
65

66
67
68
69
70

71
72
73
74

75

76
77
78
79
80
81
82
83
84

85
86
87

(i.e., subteaming) and controlling the subteams to pass through the narrow corridor while adaptively
maintaining a specific formation (i.e., adaptive formation control).

The importance of coordinated multi-robot navigation has driven the development of various tech-
niques. Traditional approaches, including classical planning methods [12], game-theoretic methods
[13, 14], and optimization-based methods [15], often face high computational costs. Recently,
learning-based methods like deep neural networks [16, 17] and multi-agent reinforcement learning
[18, 19] have been used for modeling, coordination, and navigation. However, these methods have
not addressed adaptive formation control, which is critical for narrow corridor traversal. Subteaming
methods, such as graph cuts for team division [20, 21] and mixed-integer programming for task
allocation [1, 22, 23], focus on team division alone and lack control over subteams or individual
robots, which limits their effectiveness for coordinated navigation.

To address the challenges above and enable effective coordinated multi-robot navigation in complex
scenarios where the entire robot team cannot pass through, we introduce a novel approach called
SubTeaming and Adaptive Formation (STAF), which offers new capabilities for subteam division,
formation adaptation, and team recovery. Specifically, we design a graph representation to encode a
team of robots, where each node represents a robot along with its associated attributes, such as its
position, velocity, goal, and distance to obstacles, and each edge represents the spatial relationships
between pairs of robots. Our STAF approach integrates three levels of robot learning into a hierarchical
framework. At the high level, given the graph representation of a robot team, STAF performs deep
graph cuts to divide the entire robot team into subteams. The intermediate level of STAF focuses
on learning the coordination of these robot subteams for navigation, which develops a graph neural
network with learnable message sharing to coordinate robots within a subteam, while generating
graph embeddings to encode the subteam context. Finally, at the low level, given these embeddings,
STAF employs reinforcement learning to learn a navigation policy that controls each individual robot
to adaptively maintain subteam formation, reach the goal position, and avoid collisions.

Our primary contribution is the introduction of the novel STAF method to enable a new multi-robot
navigation capability of subteaming and formation adaptation. The specific novelties include:

* This work introduces one of the first problem formulations and learning-based solutions
for subteaming and formation adaptation in multi-robot coordinated navigation. It enables
new multi-robot capabilities, including subteam division, formation adaptation, and team
recovery, allowing a team of robots to navigate complex environments in a coordinated
manner, particularly narrow corridors where maintaining original formation is infeasible.

* We introduce a novel hierarchical robot learning method that simultaneously integrates
high-level deep graph cut for subteaming, intermediate-level graph learning for subteam
coordination and adaptive formation control, and low-level individual robot control for
collision-free navigation in complex environments.

2 Related Work

Hierarchical Learning for Robotics Hierarchical learning has shown promise in complex multi-
robot tasks by providing a structured problem formulation that better aligns with multi-objective goals.
It also enhances modularity in model design, which improves interpretability and enables clearer
evaluation of each level. Applications include task allocation [24], maintaining communication [25],
path planning [26, 27], and consensus reaching [28]. Typically, the lower level handles individual
control tasks such as obstacle avoidance [29, 30]. The upper level focuses on team planning and
coordination [31, 32, 33, 18]. However, applying hierarchical learning to formation adaptation
and subteaming remains challenging due to the need for scalable team representations, dynamic
adaptation, and efficient integration of formation control with flexible team reconfiguration.

Coordinated Multi-Robot Navigation Learning-free methods rely on predefined formation strate-
gies, such as leader-follower [15, 4, 34, 35] and virtual region methods [36, 37, 38, 39]. However,
these rigid formations lack adaptability to environmental changes. Learning-based methods, such
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Figure 2: Overview of STAF, which integrates three levels of robot learning within a unified hierar-
chical learning framework to enable coordinated multi-robot navigation.

as reinforcement learning (RL) [40, 41, 18, 19, 42, 41], address this limitation by optimizing ac-
tions through environmental feedback. Graph neural networks (GNNs) enhance team coordination
and communication [43, 17], enabling decentralized decision-making [16, 44]. These approaches
have been applied in areas such as connected autonomous driving [45, 8], area coverage [46], and
search-and-rescue missions [5]. However, none of these methods effectively address subteaming and
formation adaptation in coordinated navigation, particularly in complex narrow corridors.

Subteaming in Multi-Robot Navigation and Task Allocation Subteaming increases the complexity
of coordinated multi-robot navigation as it involves splitting, merging, and reformation based on tasks
or environments. Graph-based methods [20, 21, 47, 1] use graph partitioning and cutting to determine
team division and merging, but often rely on explicit connectivity constraints. Leader-follower
methods [48, 49, 15] apply predefined hierarchy-based strategies but lack flexibility in dynamic
environments. Optimization-based approaches [50, 22, 23, 51] compute optimal assignments via
mixed-integer programming. Heuristic-based methods [52, 53] use problem-specific heuristics to
determine team formation and coordination strategies. However, these methods focus on team
division alone and lack control over subteams or individual robots. See Appendix A for details.

3 Approach

Problem Definition We discuss our STAF method that enables new multi-robot capabilities of
subteaming and formation adaptation for coordinated multi-robot navigation. An overview of STAF
is illustrated in Figure 2. We represent a team of n robots using an undirected graph G = {V, E}.
In the node set V = {vq,va,...,Vv,}, each node v; = {p;,8;,q;} consists of the attributes of
the i-th robot, where p; = [p?, p!] denotes its position, g; = [¢¥, g¢] denotes its goal position,
and q; = [¢7, ¢/] denotes its velocities along x and y directions. The edge matrix E = {a; ;}"*"
represents the spatial adjacency of the robots, where a; ; = 1, if the i-th robot and the j-th robot are
within a radius; otherwise a; ; = 0. We further define the state of the i-th robot s; = [p;, g, q;, ¢;]
as the concatenation of the robot’s attributes and the distance c¢; between the robot and its closest
obstacle. We define the action of the i-th robot as a; = [vF, v}], where v¥ and v} denote the robot’s
velocities in the x and y directions, respectively.

Our objective is to address the problems of subteaming and formation adaptation in the context of
coordinated multi-robot navigation:

* Formation Adaptation: The capability of a robot team or subteam to maintain a desired
formation while dynamically adjusting their relative positions to safely and efficiently
navigate through the unstructured environment toward their goal positions, particularly in
challenging scenarios such as narrow corridors.

* Subteaming: The capability of a robot team with a specific formation to autonomously
divide into subteams with the same formation type when navigating environments too narrow
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for the entire robot team. After successfully passing through, the subteams must merge back
into the full team, restoring the original formation.

High-Level Deep Graph Cut for Subteaming Given the graph G as the representation of the robot
team, we introduce a new deep graph cut approach at the high level of STAF to enable subteaming.
We compute the embedding of the robot graph as H = {h;} = w(G), where h; is the embedding of
the i-th robot and w is a graph attention network [54]. We project each node into a representation
space by calculating m; = W"p;, where m; denotes the projected feature vector of the i-th node,

and W" denotes the weight matrix. Then, we compute the attention c; ; from the j-th node to
exp(ReLu([W*m;||W“m;]))
2 ken () eXPReLu([Wem;[[Wem,]

unit activation function, A/ (%) represents the set of adjacent nodes of the i-th node, || denotes the
concatenation operation, and W represents the weight matrix. The attention «; ; is obtained by
computing the similarity of the i-th node with its j-th adjacent nodes, followed by the SoftMax
normalization. Then, the final embedding h; for the ¢-th node is computed through aggregating
the embeddings of all its adjacent nodes as h; = W"m, + 2ojeN () a; jW"m;, where W" is the
weight matrix. We further utilize a multi-head mechanism [54] after the attention layers to enable the
network to capture a richer embedding representation.

the i-th node as «; ; = 7> Where ReLu denotes the rectified linear

Given H = {h;}, we formulate subteaming as a graph cut problem, which partitions the entire
graph (representing the full team) into m subgraphs (representing subteams). In order to compute
team division, we develop a classifier network 7(#) consisting of two fully connected linear layers
followed by a SoftMax function, which outputs the team division results as Y = 7(H) = {y; ;}"*"™",
where y; ; is the probability of the ¢-th robot belonging to the j-th subteam, and m < n.

To ensure that robots within the same subteam group together, i.e., each robot is adjacent to its
teammates within the same subteam, we define a loss function that maximizes the adjacency of
robots within each subteam as Y (1 — Y)"E, where Y(1 — Y) " calculates the probability that a
pair of robots belong to different subteams, and E encodes the adjacency of the robots. In addition,
we aim to maintain balance in the sizes of robot subteams, encouraging each subteam to have
the same or a similar number of robots. It can be mathematically modeled by a loss function
Z;n:l (30, yi; — ). The term 2 calculates the optimal size of balanced subteams (e.g., when
n = 10 and m = 2, each subteam would consist of 5 robots). Furthermore, we model the mission
objective of reaching the goal position by minimizing the overall distance between the subteams

and their respective goal positions. It can be mathematically defined as 27:1 HM -

Dieq Vi
N g nooao . . [
S5 o ST, i .
21 ViiBi || \where 2i=1¥iPi denotes the center position of the j-th subteam and izl YiiSi
Zi:l Yi,j 2 Ei:l Yi,j Zi:l Yi,j

denotes the center position of the goal for the subteam.

The high-level component of STAF performs an unsupervised graph cut to enable team division for
subteaming by minimizing the following objective function:

Subteam balance Subteam-goals distance

Subteam adjacency
m

—_———  m n
Le=Y1-Y)TE+)_ (Zyi,j - :L) +>
=1 \i=1 =1

which jointly accounts for subteam adjacency, subteam balance, and subteam-goal distances.

D1 YigPi | 21 Yii8i
i1 Vi i1 Vi

ey

2

Intermediate-Level Graph Learning for Multi-robot Formation Adaptation To enable adaptive
multi-robot formation control, we develop a graph learning approach at the intermediate level of
STAF, which coordinates multiple robots to maintain a specific formation while adapting it based
on the surrounding environment. Given G that represents a team (or subteam) of robots along with
the state s; for each robot i, we develop a graph network ¢ to compute the embedding f; = ¢(s;, G)
of the team state with respect to the ¢-th robot, which encodes the spatial relationships between the
i-th robot with others in the team. The network ¢ uses a linear layer to project the robot state s; to
the individual embedding z; of the i-th robot by z; = W?s;, where W~ is the weight matrix of the
linear layer. Then, for the i-th robot, ¢ aggregates individual state embeddings of all other teammates
through message passing to compute the team state embedding f; with respect to the i-th robot as
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fi = W'z, + 3 iy W (25 — 2), where W/ is the weight matrix. The team state embedding
f; with respect to the i-th robot encodes not only its own states (captured in the first term), but also
the relative spatial relationships with other teammates (captured in the second term), which facilitates
the coordination of actions to maintain specific formations during multi-robot navigation.

Robot teams and subteams may encounter scenarios, such as narrow corridors, where rigidly maintain-
ing their formations prevents successful navigation. To enable formation adaptation, we implement
a spring-damper model [55, 56] that dynamically adjusts the shape of the formation within the
same type. This spring-damper model includes two components: (1) The spring component ensures
that robot pairs maintain a balance between staying close enough to navigate narrow corridors and
keeping a sufficient distance to prevent collisions, with the flexibility to adjust formation and enable
adaptation. This spring component is modeled as |d; ; — p; ;|, where d; ; denotes the expected
distance in the original formation and p; ; represents the actual distance between the ¢-th and j-th
robots, computed as ||p; — p;||2. (2) The damper component prevents oscillation and overshooting
of each robot during navigation by smoothing the relative velocities between pairs of robots, which is
defined as ¢; ; = [|q; — q;||2. Combining these components, the spring-damper model for formation
adaptation is mathematically defined as R = 3 .y, =Aldi;; — pi,j| — (1 — N)gi,j, where A
is a hyperparameter that balances the importance of the spring and damper components. R is
incorporated into the reward function, which is used to derive a loss function for training STAF.

Low-Level Individual Robot Control for Navigation At the low-level of STAF, we introduce a
navigation control network that outputs velocity commands as actions for each robot to reach its goal.
Given the state s; for the i-th robot, we compute its state embedding f;. We design the network v,
which consists of two linear layers followed by the ReLU activation function, maps this embedding
to an action as a; = (f;). The network ¢ is a part of the control policy 7y (a;|s;), parameterized by
0, which is trained using the framework of reinforcement learning. To enable each robot to move
toward its target position and reach the navigational goal, we design a reward function based upon the
distance between the current positions of the robot and its goal position. To enable obstacle avoidance
for safe navigation, we implement a reward function that imposes a penalty when a robot comes too
close to nearby obstacles or other robots in the team. When robots are divided into subteams, and
once all subteams pass through the narrow corridor into an open area that is large enough for the full
team, the goal position of each individual robot is updated to align with the full team’s goal, thereby
recovering the subteams back into the full team with the original formation.

See Appendix B for details on STAF Training and Execution with their time complexity analysis.

4 Experiments

Experimental Setups We comprehensively evaluate our STAF approach across three setups: (1) a
standard Gazebo simulation in ROS1, (2) a high-fidelity Unity-based 3D multi-robot simulator in
ROS1, and (3) physical robot teams running ROS2. Each setup involves different numbers and types
of robots arranged in formations such as circle, wedge, and line. In all scenarios, the environment
includes narrow corridors, which require the full robot team to divide into subteams that adapt their
formation to pass through. Afterward, the subteams regroup into the original full-team formation. In
simulation, robot poses and obstacles are obtained from Gazebo and Unity. In real-world experiments,
robots use a SLAM approach [57] for state estimation and mapping. See Appendix C for details on
approach implementation and training. All video demonstrations are available on our project website.

We implement the complete STAF approach referred to as STAF-full. The full team divides into
subteams to navigate through narrow environments, and after passing through, the subteams regroup
into the full team to its original formation. To analyze the performance of the subteams, we refer
to the subteams as STAF-sub#, e.g., STAF-subl and STAF-sub2. For comparison with STAF, we
further implement two previous methods for multi-robot coordinated navigation, including: (1) A
Leader and Follower method (L&F) [15] that one of the robots is designated as the “leader robot”
that leads the movements of the other “follower robots” in the team while maintaining the formation.
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Table 1: Quantitative comparison of STAF and Previous Methods from Gazebo simulations in ROS1.

Method Circle Formation [ ‘Wedge Formation Line Formation
SR (%0)[TT (sec)Jo < 0.5[o < 0.1]o < 0.01[SR (B)[TT (sec)[o < 0.5]c < 0.1I]o < 0.01|SR ()[TT (sec)Jo < 0.5]c < 0.1[o < 0.01]

[

|
[DGNN [18]] 100.00

|

[

[ [ | [ [ [ [ [

[ 6870 [ 6041 | 5891 | 5801 [100.00] 82.70 | 47.85 | 42.33 | 4192 [100.00] 72.61 | 27.90 | 20.16 | 20.16 |
[C&F15] | 4000 | 27.40 | 67.28 | 6454 | 62.69 | 70.00 | 2650 | 69.70 | 62.11 | 5947 | 6000 | 30.10 | 63.76_| 5589 | 5589 |
[STAF-full [100.00] 102.10 | 87.79 | 80.12 | 80.12_|100.00] 6930 | 80.52 | 80.51 | 80.50 [100.00] I11.50] 91.45 | 80.06 | 7893 |

Figure 3: Qualitative results from Gazebo simulations on subteaming and formation adaptation.

(a) Circle formation (b) Wedge formation (c) Line formation

Figure 4: Movement trajectories of ten robots navigating a narrow corridor with different formations.
In Figure 4(a) to 4(c), the first subfigure displays two subteams (red and blue) during team division,
navigation with formation adaptation, and regrouping. The second and third subfigures show subteam
trajectories, with each robot’s path in a distinct color and gray dashed lines indicating obstacles.

(2) Decentralized GNN (DGNN) [18] that built upon a hierarchical learning framework to generate
velocity controls for each individual robot for navigation, without considering team-level formations.

To quantitatively evaluate and compare with other methods, we employ three metrics, including:
(1) Successful Rate (SR) is defined as the proportion of the robots within the full team that suc-
cessfully reach goal positions without collisions. (2) Travel Time (TT) is defined as the total
time used by the full team to reach the goal position. (3) Contextual Formation Integrity (CFI)
is defined as the real-time adherence of the robots to their designated formation, given a shape
threshold that defines the strictness of the formation. The CFI metric combines concepts of thresholds
and uncertainty, which are commonly applied in computer vision [58]. It is formally defined as
w(l—o tmin(lr - (n+o0o)|,|r—(n—0)|)) + (1 — w)e. The CFI € [0, 1] evaluates how effec-
tively a robot team utilizes corridor gap and maintains formation. It combines two terms: the first
measures spatial efficiency using the team’s maximum radius 7, corridor width 7, and uncertainty o,
where smaller o indicates stricter formation requirements; the second € € [0, 1] evaluates the integrity
of the team shape. A weighting factor w balances the two terms, with higher CFI values indicating
better performance. See Appendix D for details on CFI and its calculation of different formations.

Results in Multi-Robot Simulations The qualitative results in the Gazebo simulation are shown
in Figure 3. L&F gets stuck in the narrow corridor due to the lack of subteaming and formation
adaptation. In contrast, our method autonomously divides the team, enabling each subteam to adapt
formations and reach the goal; the first subteam starts moving, followed by the second, and they
eventually merge into the full formation. Notably, for wedge formations, team division prioritizes
goal-distance objectives instead of maximizing connectivity, resulting in more compact subteams.

We visualize the trajectories of a team of 10 robots navigating in different formations, as shown in
Figure 4. The visualization reveals subteaming behaviors (indicated by subteams in red and blue
colors), including team division and regrouping. Additionally, formation adaptation of each subteam
occurs when navigating through narrow corridors (indicated by the individual robot trajectories).
These results show the effectiveness of STAF in enabling both subteaming and formation adaptation.
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The quantitative results are shown in Table 1. DGNN Table 2: Quantitative results of two sub-
performs the worst, particularly in the CFI metrics, as teams from Gazebo simulations in ROS1.
it lacks formation control. L&F uses formation con- I |
o sec)lo < 0.5l < 0.1]o < 0.
trol and. performs better. but has only a 40% success T e e
rate, as it lacks subteaming and formation adaptation, [STAF-subl| Wedge |100.00| 58.80 | 77.22 | 7179 | 69.86
. . . . . Line |100.00| 78.51 91.13 79.53 77.43
which makes narrow corridor navigation difficult. Our Circle [100.00] 59.50 | 87.72 | 8267 | S0.11
method outperforms both by addressing these limita- [T Yedee | 190.00 46080 | 5099 | 801> | 17
tions, which achieves a 100% success rate. Although
STAF yields slightly longer travel times, this is expected due to its more complex navigation strategy.
Subteam performance in Table 2 shows a 100% success rate across all formations. STAF maintains
formation integrity above 87%, 80%, and 91% under the threshold o < 0.5 for circle, wedge, and line
formations, respectively. These results highlight the effectiveness of STAF in enabling coordinated
navigation through subteaming and adaptive formation control in complex environments.

Metrics |

Subteam

Formatir\"}

Figure 5: Qualitative results from Unity3D simulations in ROS1 using varying numbers of differential-
drive Warthog robots in three formations while navigating a long, unstructured field environment.

Figure 6: Qualitative results from real-world experiments in both indoor narrow spaces and outdoor
uneven terrain, using varying numbers of Limo robots running ROS2 and communicating via Wi-Fi.

Beyond the Gazebo simulation, we further use a high-fidelity Unity3D simulator in ROS1, which
simulates outdoor field environments with narrow pathways and bridges. Instead of using holonomic
robots as shown in the Gazebo simulation, we use differential-drive Warthog robots and convert
the linear velocity in the action a; into wheel velocities to follow the same trajectory. This setting
introduces new challenges, which require the robot team to navigate complex, long curved paths
that demand continuous formation adjustments, as well as extremely narrow areas that demand
division into more than two subteams. As illustrated in Figures 5, our STAF approach successfully
addresses these challenges by dividing a full team into subteams, adapting actions of differential-drive
subteams to navigate, and regroup after subteam traversal. For line formation with 9 robots, STAF
can dynamically divide into three subteams to navigate a corridor too narrow for groups larger than 3.

Case Study on Physical Robot Teams We validate STAF on real-world case studies using differential-
drive Limo robots with caterpillar tracks, each equipped with an onboard Intel NCU i7 and running
ROS2 with Wi-Fi-based team communication. The real-world experiments are conducted both
indoors and outdoors, as shown in Figure 6. Our method enables teams of 6 to 8 robots to divide
into subteams and adapt formations to smoothly navigate narrow indoor spaces, including doorways,
hallways, and exits. In outdoor experiments on unstructured terrain such as passages between bollards,
scattered trees, and roadblocks, the results demonstrate the strong adaptability of our approach to
unknown environments. Subteaming and formation adaptation are effectively performed even on
snowy and uneven terrain, where wheel slippage introduces significant action uncertainty. Additional
Unity3D and real-world qualitative results with more timesteps are provided in the Appendix E.

5 Discussion

Ablation Study on Subteam Division We conduct an ablation study to evaluate the role of each
component in the objective function defined in Eq. (1) for team division. Figure 7(a) shows that



280
281
282
283
284
285
286
287

289
290
291
292

293
294
295
296
297
298
299
300

302

303
304
305
306
307
308

(a) ST-B (b) ST-A (c) ST-G (d) w/o ST-B (e) w/o ST-A (f) wlo ST-G

Figure 7: Ablation study that analyzes the impact of subteam division components: subteam balance
(ST-B), subteam adjacency (ST-A), and subteam-goals distance (ST-G).

(a) 4 robots (b) 6 robots (c) 7 robots (d) 8 robots (e) CFI across team sizes

Figure 8: Quantitative results indicate STAF’s generalizability to different team sizes. Figures (a)-(d)
show the trajectories of 4 to 8 robots in circle formations to navigate a narrow corridor. Figure (e)
presents the variation in CFI values across different team sizes and o values.

optimizing only the balance term evenly splits 12 robots into 3 subteams. Figure 7(b) shows that only
maximizing adjacency leads to all robots being assigned to the same subteam. Figure 7(c) shows that
only minimizing the goal-distance aligns subteams toward their goals (in the upper right). In addition,
we remove each component individually to assess its impact. Figure 7(d) shows unbalanced team
division without the balance term. Figure 7(e) results in uncompact subteams without the adjacency
term. Figure 7(f) shows subteams misaligned with goals, which leads to inefficient navigation. These
results further indicate the effectiveness and importance of enforcing subteam balance, maximizing
adjacency, and minimizing subteam-goals distance for robot team division.

Generalizability to Different Team Sizes We evaluate the generalizability of STAF to different
team sizes by varying the number of robots. Figures 8(a)-8(d) present the qualitative results on
formation adaptation for teams of 4, 6, 7, and 8 robots in circle formation, which validate STAF’s
generalizability across team sizes. Figure 8(e) presents the quantitative results using the CFI metric,
which shows 87% formation integrity for 4 robots under o < 0.03, and at least 80% for 8 robots.

Generalizability to Different Numbers of Sub-

teams We evaluate STAF’s generalizability in

dividing the team into varying numbers of sub-

teams. As shown in Figure 9, STAF effectively

handles divisions into 2, 3, and 4 subteams. Fig-

ure 5 contains a scenario where a nine-robot line  (a) 2 subteams  (b) 3 subteams  (c) 4 subteams
formation splits into three subteams to navigate Figure 9: Qualitative results indicate STAF’s gen-
a corridor too narrow for groups larger than four. eralizability to different numbers of subteams.

See Appendix F for STAF’s Robustness to Noise and Applicability to Different Robot Platforms.

6 Conclusion

In this paper, we propose STAF for coordinated multi-robot navigation in complex scenarios. STAF
is built upon a unified hierarchical learning framework, including a high-level deep graph cut for
dynamic team division, an intermediate-level graph learning for team coordination with adaptive
formation control, and a low-level RL policy for individual robot control. Results from comprehensive
experiments show that STAF enables new multi-robot capabilities for subteaming and formation
adaptation, and significantly outperforms existing methods on coordinated multi-robot navigation.
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7 Limitations

Our approach presents several limitations that suggest directions for future research. First, although
STAF’s intermediate and low levels are executed in a decentralized fashion, STAF’s high level for
team division is executed in a centralized fashion. One direction for future research is to decentralize
the high-level team division, such as by replacing the current global graph cut optimization with
a distributed consensus algorithm (e.g., gossip [59] or max-consensus [60]). These decentralized
methods would enable each robot to determine its subteam based upon the information shared by its
teammates through broadcasting, and iteratively reach a consensus and converge to a stable subteam
assignment through negotiation. Second, the alternating training algorithm we use, which iteratively
trains the high-level and joint intermediate-low levels, is considered a limitation, as it may lead
to suboptimal integration of these levels and difficulties with training error propagation. In the
future, we plan to integrate the high-level graph cut together with the joint intermediate-low level
training into an end-to-end training algorithm, where the training error from the low level will be
propagated not only to the intermediate level but also to the high level, which enables updates to the
network parameters across all three levels. To achieve this, we will adopt a centralized training with
decentralized execution strategy, where all levels of the hierarchy can leverage global information
during training, while ensuring decentralized execution during deployment. The third limitation
is that the number of subteams, as a hyperparameter, is decided manually. A future direction is to
dynamically and adaptively determine this hyperparameter by selecting the minimum number of
subteams such that the smallest formation of each subteam can successfully navigate through the
narrowest corridor in the environment. The width of a corridor can be identified either by analyzing
the environment map (using a prior map or built by a SLAM method) or through real-time robotic
sensing.
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Appendix
A Extended Related Work

In this section, we will first review existing techniques for learning-free coordinated multi-robot
navigation. Then, we will review previous methods for subteaming in the areas of multi-robot
navigation and task allocation. Finally, we present the state-of-the-art works on hierarchical learning
for robotics.

A.1 Learning-Free Coordinated Multi-Robot Navigation

We review existing methods from two main perspectives: the multi-robot team formation and the
theoretical perspective to enhance coordinated efficiency. From the multi-robot team formation angle,
prevalent configurations include the leader-follower structure, where follower agents are programmed
to maintain group behavior by following a leader agent [15, 4, 34, 35]. Additionally, virtual region
methods that allow robot teams to adjust their formation within specified virtual areas are thoroughly
explored [36, 37, 38, 39]. However, these formations are often rigid and lack the flexibility needed to
adapt to complex environments that require dynamic formation changes.

From the theoretical perspective, classic methods of coordinated multi-robot navigation are catego-
rized into three groups: traditional planning methods, game-theoretical approaches, and optimization-
based techniques. Traditional planning methods include algorithms, such as A* and its variants
[61], rapidly exploring random trees (RRT) [12], and probabilistic roadmap (PRM) [62]. Game-
theoretical approaches model multi-robot navigation as cooperative games for path planning [13, 14].
Optimization-based methods aim to optimize various objectives in order to coordinate multiple
robots during navigation, such as identifying traversable areas to prevent collisions [63, 64], main-
taining communication [15], maximizing area coverage [65], and addressing hierarchical quadratic
programming (HQP) problems for cooperative tasks [11, 66]. Traditional methods in coordinated
navigation are primarily based upon heuristic searching and typically incur substantial computational
costs. Additionally, none of these previous classic methods effectively address subteaming and
formation adaptation in the context of coordinated navigation, particularly in complex scenarios such
as traversing narrow corridors.

A.2 Subteaming in Multi-Robot Navigation and Task Allocation

Integrating subteaming with coordinated multi-robot navigation introduces additional complexity be-
yond the standard multi-robot coordination, which requires team splitting, merging, and reformation in
response to environmental and task constraints. Existing methods can be broadly categorized into four
groups, including graph-based, leader-follower-based, optimization-based, and heuristic-based meth-
ods. Graph-based methods [20, 21, 47, 1] use graph partitioning and graph cut techniques to determine
how to divide and merge teams, typically relying on explicit connectivity constraints. Leader-follower
methods [48, 49, 15] employ predefined hierarchy-based motion strategies, where a subset of agents
leads and others follow, limiting flexibility in dynamic environments. Optimization-based methods
typically use mixed-integer programming [50, 22, 23, 51] to compute optimal assignments and motion
plans. Heuristic-based methods [52, 53] offer computationally efficient alternatives by leveraging
problem-specific heuristics to determine team formation and coordination strategies. However, these
methods generally focus on team division alone, without the capability of controlling the subteams or
individual robots, which makes them unsuitable for addressing coordinated navigation.

A.3 Hierarchical Learning for Robotics

Recently, learning-based methods have gained significant attention for improving coordinated naviga-
tion in multi-robot systems. Reinforcement learning (RL) approaches have shown promising results in
enabling robots to adapt to environmental changes [40, 41]. However, single-level RL methods often
struggle with convergence in complex scenarios. Graph neural networks (GNNs) have been used to
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enhance team coordination and communication [43, 17], supporting decentralized decision-making
[16, 44]. Multi-agent reinforcement learning (MARL) further improves coordinated navigation by
training robots to cooperate effectively [18, 19, 42, 41]. These learning-based approaches have been
successfully applied in areas such as connected autonomous driving [45, 8], area coverage [46], and
search-and-rescue missions [5].

Hierarchical learning attracts increasing attention to address this issue for complex multi-robot
tasks, such as solving combinatorial optimization for multi-robot task allocation [24], maintaining
communication that ensures connectivity among robots [25], multi-robot path planning [26, 27] and
consensus reaching [28]. Specifically, the lower level policy aims to optimize individual robot control,
such as enabling obstacle avoidance [29, 30]. The upper level focuses on multi-robot planning and
coordination, such as selecting sub-goals through goal-based planning [31], dividing exploration
areas using dynamic Voronoi partitions [32], facilitating obstacle avoidance [33] and communication
between robots [18].

These methods leverage hierarchical policy to optimize both high-level task planning and low-level
motion control simultaneously, which achieves promising performance compared to traditional
methods that rely on predefined rules and explicit environment representations. However, applying
hierarchical RL to formation adaptation and subteaming remains an open challenge due to the need
for scalable representations of team structures, dynamic adaptation to changing environments, and
efficient integration of formation control with flexible team reconfiguration.

B STAF Training and Execution

B.1 STAF Training

To train STAF as a three-level hierarchical learning model, we design an alternating training algo-
rithm that iterates between using unsupervised learning to train the high level for sub-teaming and
using Proximal Policy Optimization (PPO) [67] to jointly train the intermediate level for formation
adaptation and the low level for individual robot control.

Specifically, the high-level training receives a 2D occupancy map of the environment (e.g., built
using a SLAM approach [57]), as well as the starting and goal positions of the robots within the
map as input. The high level is trained using ADMM as the optimization solver [68] by deriving
the gradient of the unsupervised loss function in Eq. (1) to update the weights W® and W" of the
deep graph cut network 7 for subteam division, which considers subteam adjacency, subteam balance,
and subteam-goal distance. In the same iteration, we fix the high-level model once its training is
complete, and we utilize PPO to jointly train the intermediate and low levels of STAF. We design the
overall reward as a weighted summation of the coordination reward in STAF’s intermediate level for
formation adaptation, and the navigation reward and obstacle avoidance reward for individual robot
control. These rewards are used to compute the advantage function A™“(s;, a;), which quantifies
how much better taking action a; in state s; is compared to the old policy 7y, (s;, a;). Then, a loss
value is computed by aggregating the differences for all robots between the output of the updated PPO
policy my(s;, a;) and the old policy 7y, (s;, a;). To prevent instability in training due to large policy
updates, a clipping function clip(1 — 4, 1 + §) is used to constrain the ratio between the updated and
old policies, ensuring that training stays within a stable trust region defined by J. Integrating the
components above, the loss function can be expressed as:

Z Esi,aifwd’renld |:II11H ( ﬂ-e(ai‘Si) ATl (Sif ai)a Chp ( 0 (ai|Si) ) 1- )\7 1+ )‘) AT (Si7 a7)):|

vi,EV 7T€<>/d(ai‘si) WG(,/t,(ai|Si)
)

where d™%u represents the probability of encountering a state s; and performing an action a; while
following the old policy 6,4, and E is the expectation over d"%u for all robots. Gradients computed
from this objective are used to train the individual robot navigation policy 7y at the low level, and
backpropagated to the intermediate level to update weights W7 of the graph network ¢ for formation
adaptation.

15



603

604

606
607
608
609

611
612
613
614

615

616
617
618
619
620
621
622
623
624
625
626
627
628

629

630
631
632
633
634
635
636

637
638
639
640
641
642

643

644
645

B.2 STAF Execution

During execution, STAF performs centralized planning with decentralized execution. STAF assumes
the 2D occupancy map of the environment along with the starting and goal positions of the robots as
input, just as in training. The deep graph cut at the high level of STAF is performed in a centralized
manner (although decentralization is possible, as discussed in Section 7): Each robot broadcasts its
state via wireless communication (e.g., Wi-Fi), and a designated robot collects the states from all its
teammates to compute the subteam assignments. After subteam division, formation adaptation at
STAF’s intermediate level is performed in a decentralized manner. Through the same broadcasting
mechanism via Wi-Fi, each robot can determine the relative positions of its teammates, which enables
the robot to dynamically adjust its own position in relation to others to maintain and adapt the
designated formation. Then, each robot executes velocity commands derived from the individual
robot control policy at the low level of STAF.

B.3 STAF Time Complexity Analysis

Training time complexity is dominated by O(n?), where n is the number of robots. The high level
has an O(H L;, T, Dn?) complexity, where H is the number of attention heads of the transformer
encoder with Ly, layers in the upper-level GNN, 77}, is the number of graph training epochs, and D is
the number of samples for network training. The intermediate level has an O(L,,T,n?) complexity,
where L, is the number of layers in GNN, and 7, is the number of training iterations using PPO.
The low-level training has an O(7T,(Bn? + IBn)) complexity, where B is the number of PPO’s
rollouts to interact with the environment in each iteration, and [ is the number of PPO training
epochs. O(Bn?) is for computing the advantage function and O(I Bn) is for updating the policy.
Combining all terms, the overall complexity for training is O(H L, Ty, Dn? + LmTpn2 + Tp(Bn2 +
IBn)). Execution time complexity is dominated by O(n?). The complexities of the three levels
are O(HLypn?), O(L,,n?), and O(n), respectively. Thus, the overall execution complexity is
O(HLpn? + Ln?2, + n). We will add a new subsection in the approach section to discuss details of

m

the time complexities.

C Experiment Setup

To implement STAF, the edges in the robot team graph are constructed by connecting the nearby
robots within a radius setting to 2 meters. STAF’s high-level deep graph cut network contains
one linear layer with W7 setting to the dimension of 2 x 32 and three transformer layers with
the parameter W and W setting to the dimension of 32 x 32. The intermediate-level GNN for
formation adaptation contains one encoder with W~ setting to the dimension of 6 x 64 and one
GNN layer with W9 setting to the dimension of 64 x 64. The hyper-parameter A\ = 0.6 in the
spring-damper model of STAF is to balance spring and damper force.

We generate synthetic data to train our STAF approach. Specifically, given a robot team formation,
we randomly generate the positions of the robots within the formation. In total, we collect 10, 000
data instances to train our high-level network. The high-level network is trained for 100 epochs, while
the adaptive formation control policy, involving both the intermediate-level and low-level neural
networks, is trained over a total of 800 epochs. This alternating training of the high-level and joint
intermediate-low-level networks continues until convergence.

D Examples of Computing the CFI Evaluation Metric

To evaluate formation adaptation, we introduce Contextual Formation Integrity (CFI) metric in our
paper, which is mathematically defined as:

fmin (Ir — (+ o)) [r = (n = 0)])) + (1 - w)e

where the first term assesses the team’s efficiency in utilizing the corridor gap, where r is the robot
team’s maximum radius, 77 denotes the corridor width with a safety margin, and o is a threshold with

w(l—a_
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Figure 10: Example scenarios used to comprehensively evaluate and validate out STAF approach in
multi-robot simulations as well as using real physical robots in both indoor and outdoor environments.

smaller values imposing stricter formation requirements. CFI’s second term € € [0, 1] evaluates the
integrity of the team shape. CFI combines these two terms to evaluate how effectively a robot team
uses the corridor space and maintains its formation, with the balance determined by the coefficient w.
The metric CFI € [0, 1], where higher values indicate better performance. In our experiments, we set
w = 0.5 to treat the gap usage and the formation integrity equally important. Additionally, we set &
to twice the width of the robot used in the corresponding experiments. For a number of n robots, the
€ in CFI is computed as follows:

¢ Circle formation: ¢ = 1 — % S (n,fw where 6, represents the interior angle of the

triangle with the ¢-th robot as the vertex, and (n=2)x180

approximating a circle when the team has n robots.
2|szL | _ [2Lm—Ly
Ly,

is the interior angle of the polygon,

* Wedge Formation: e = 1— ,where L;, L,., L,,,, Ly represent the lengths
of the left, right, middle, and base sides of the 1sosceles triangle formed by the robots.

* Line Formation: ¢ =1 — — Z" 1L, ”1 , where L; ;1 represents the distance between
neighboring robots, and L denotes the full width of the robot team. The term e measures the
relative deviation from the ideal line formation.
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(a) A team of ten Warthog robots with a circle formation navigates through a narrow corridor on uneven terrain.

(b) A team of ten robots in a wedge formation traverses a progressively narrowing corridor between buildings.

(c) A team of nine robots in a line formation navigates through multiple narrow passages.

Figure 11: Qualitative results on subteaming and formation adaptation during coordinated multi-robot
navigation using a high-fidelity Unity3D simulations in ROS1. The experiments adopt different
numbers of differential-drive Warthog robots that maintain circle, wedge and line formations while
traversing an unstructured outdoor field environment

E Extended Experiments

We comprehensively evaluate our STAF approach across diverse scenarios, with several representative
examples shown in Figure 10. Due to space limitations, additional qualitative results with extended
timesteps from Unity3D simulations, and real-world indoor and outdoor experiments are provided in
the appendix, highlighting the progression of subteaming and formation adaptation over time.

Case Studies on High-fidelity Unity 3D Simulations As illustrated in Figures 11(a) and 11(b), our
STAF approach successfully divides the full team into subteams and smoothly adjusts the actions of
differential-drive robots to navigate complex and curved trajectories toward the goal. This validates
the effectiveness of our method in handling both formation adaptation and subteaming in challenging
environments. Figure 11(b) specifically demonstrates subteaming and formation adaptation in a
wedge formation while navigating a progressively narrowing corridor between buildings. Our subteam
division emphasizes subteam-goal distance, resulting in more compact subteam formations, as shown
at 8 seconds. By 46 seconds, the formation adaptation capability of the two subteams becomes clearly
evident. In addition, Figure 11(c) shows that our approach dynamically divides the team into three
subteams, enabling successful navigation through the narrow corridor and subsequent regrouping.
This further demonstrates the capability of STAF to handle subteaming beyond two subteams in
extremely constrained scenarios.

Case Study Validation on Physical Robot Teams We validate our STAF method through case
studies involving real physical multi-robot teams, using differential-drive Limo robots equipped
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(a) A team of eight physical robots with a circular formation navigates through a narrow doorway in a hallway.

(b) A team of six robots with a wedge formation navigates through a narrow exit.

(c) A team of six robots in a line formation navigates through a slightly wider but still confined doorway.

Figure 12: Qualitative results of coordinated multi-robot navigation, including team division, for-
mation adaptation, and team recovery, using varying numbers of differential-drive Limo robots that
maintain circle, wedge, and line formations across different indoor scenarios.

with caterpillar tracks. The experiments are conducted in both real-world indoor and outdoor
environments, and we present six representative scenarios in the paper, each highlighting various
real-world challenges. The indoor environments involve navigating constrained spaces, such as a
narrow doorway in a hallway, a tight exit from an indoor area to a partially open outdoor space, and a
slightly wider but still confined corridor. The outdoor experiments are conducted on unstructured
terrain, including a narrow passage between two concrete security bollards, a forest-like environment
with narrow corridors surrounded by scattered trees and obstacles, and a pathway with boundaries
marked by two sticks blocking vehicle access.

The experimental results using real robot teams in indoor environments are shown in Figure 12(a).
Our approach allows 8 Limo robots to dynamically divide into 2 subteams and successfully navigate
through a narrow doorway with formation adaptation. In the scenarios of narrow hallway and tight
exit, as shown in Figures 12(b) and 12(c), our approach continues to effectively facilitate subteaming
and formation adaptation within a robot team with 6 robots, ensuring smooth navigation through
constrained spaces in the real world. The experimental results using Limo robot teams in outdoor
environments are shown in Figures 13(a), 13(b) and 13(c). The results indicate a strong adaptation
capability of our approach to unknown environments; subteaming and formation adaptation can well
be performed on snowy and uneven terrain, where wheel slippage poses large action uncertainty. By
effectively coordinating robots within a team or subteam, our method achieves stable and adaptive
navigation, ensuring efficient team coordination even in highly uncertain and unknown environments.

F Extended Discussion

In the main paper, we analyze the characteristics of our STAF approach, focusing on its general-
izability to different team sizes and numbers of robots, and include an ablation study on subteam
division. Here, we demonstrate the approach’s robustness to noise and its applicability to different
robot platforms. While circle formations are included to highlight the characteristics of our approach,
we have conducted additional experiments using other formations and observed similar results.
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(a) A team of eight physical Limo robots with a circle formation traverses a narrow passage between two
concrete security bollards.

(b) A team of six robots in a wedge formation navigates through a forest-like environment with narrow corridors
surrounded by scattered trees and obstacles.

(c) A team of six Limo robots in a line formation navigates through a narrow pathway with boundaries marked
by two sticks blocking vehicle access.

Figure 13: Qualitative results of team division, formation adaptation, and team recovery during
coordinated navigation using varying numbers of differential-drive Limo robots that maintain circle,
wedge, and line formations across different unstructured outdoor environments.

Robustness in Subteam Division to Noise

In order to analyze STAF’s robustness to noise

in subteam division, we first present the graph

cut performance in Figure 14(a) under normal

conditions. These conditions are defined as the

experimental setups where robot positions are

uniformly distributed along a circular edge, with

no noise introduced. Our STAF approach clearly (a) Normal situation (b) Noisy situation
achieves an even division of the robot team into

two subteams, ensuring maximum adjacency Figure 14: STAF’s robustness in graph-cut-based
within each subteam and minimum distance be- Subteam division to noise.

tween subteams and their respective goals. Then, to simulate noise in robot state estimation, which is
often modeled as Gaussian [69], we add standard Gaussian noise to the robot positions, as illustrated
in Figure 14(b). Despite the added noise, our approach preserves a consistent subteam division, which
indicates the robustness of our STAF approach against positional perturbations.

Applicability to Different Robot Platforms

We further demonstrate the applicability of our

STAF approach to different robot types. In high-

fidelity Unity3D simulation in ROS1, we test it

on differential-drive Warthog robots, while real-

world experiments involve Limo robots. Ad-

ditionally, we assess its performance with 10 Figure 15: Applicability of STAF to a team of
holonomic-drive robots. As illustrated in Figure ~holonomic robots for coordinated navigation, sup-
15, our STAF approach successfully enables a ported by an external tracking system (OptiTrack).
new team of holonomic robots to perform sub-

teaming and adaptive formation control to navigate through narrow corridors, with the support of an
external tracking and state estimation system using OptiTrack.
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