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Abstract: Coordinated multi-robot navigation is essential for robots to operate as a1

team in diverse environments. During navigation, robot teams usually need to main-2

tain specific formations, such as circular formations to protect human teammates at3

the center. However, in complex scenarios such as narrow corridors, rigidly preserv-4

ing predefined formations can become infeasible. Therefore, robot teams must be5

capable of dynamically splitting into smaller subteams and adaptively controlling6

the subteams to navigate through such scenarios while preserving formations. To7

enable this capability, we introduce a novel method for SubTeaming and Adaptive8

Formation (STAF), which is built upon a unified hierarchical learning framework:9

(1) high-level deep graph cut for team splitting, (2) intermediate-level graph learn-10

ing for facilitating coordinated navigation among subteams, and (3) low-level11

policy learning for controlling individual mobile robots to reach their goal positions12

while avoiding collisions. To evaluate STAF, we conducted extensive experiments13

in both indoor and outdoor environments using robotics simulations and physical14

robot teams. Experimental results show that STAF enables the novel capability for15

subteaming and adaptive formation control, and achieves promising performance16

in coordinated multi-robot navigation through challenging scenarios. More details17

are available on the project website: https://anonymous188.github.io/STAF/.18

Keywords: Coordinated multi-robot navigation, subteam, hierarchical learning.19
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Figure 1: When a robot team in circular formation
encounters a bridge that is too narrow for the entire
team to cross at once. The robots must divide into
subteams, adapt their formations to navigate the
bridge, and recovery the full team after crossing.

Multi-robot systems have attracted growing at-21

tention due to their advantages, such as redun-22

dancy [1], parallelism [2], and scalability [3].23

Coordinated multi-robot navigation is a funda-24

mental capability that allows teams of robots to25

traverse environments in a synchronized manner26

and reach goal positions collectively [4]. This27

capability is crucial in real-world applications,28

such as search and rescue [5, 6, 7], space explo-29

ration [8, 9], and transportation [10, 11].30

During coordinated navigation, robots are often31

required to maintain mission-specific formation,32

such as circular formations for protection or line33

formations for coverage. However, rigid adher-34

ence to predefined formations can hinder effec-35

tive navigation in certain scenarios. For instance, Figure 1 depicts a team of ten robots in a circular36

formation encountering a corridor too narrow for the entire team to pass through. Thus, the team must37

be capable of dynamically dividing into smaller units that operate both independently and cohesively38
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(i.e., subteaming) and controlling the subteams to pass through the narrow corridor while adaptively39

maintaining a specific formation (i.e., adaptive formation control).40

The importance of coordinated multi-robot navigation has driven the development of various tech-41

niques. Traditional approaches, including classical planning methods [12], game-theoretic methods42

[13, 14], and optimization-based methods [15], often face high computational costs. Recently,43

learning-based methods like deep neural networks [16, 17] and multi-agent reinforcement learning44

[18, 19] have been used for modeling, coordination, and navigation. However, these methods have45

not addressed adaptive formation control, which is critical for narrow corridor traversal. Subteaming46

methods, such as graph cuts for team division [20, 21] and mixed-integer programming for task47

allocation [1, 22, 23], focus on team division alone and lack control over subteams or individual48

robots, which limits their effectiveness for coordinated navigation.49

To address the challenges above and enable effective coordinated multi-robot navigation in complex50

scenarios where the entire robot team cannot pass through, we introduce a novel approach called51

SubTeaming and Adaptive Formation (STAF), which offers new capabilities for subteam division,52

formation adaptation, and team recovery. Specifically, we design a graph representation to encode a53

team of robots, where each node represents a robot along with its associated attributes, such as its54

position, velocity, goal, and distance to obstacles, and each edge represents the spatial relationships55

between pairs of robots. Our STAF approach integrates three levels of robot learning into a hierarchical56

framework. At the high level, given the graph representation of a robot team, STAF performs deep57

graph cuts to divide the entire robot team into subteams. The intermediate level of STAF focuses58

on learning the coordination of these robot subteams for navigation, which develops a graph neural59

network with learnable message sharing to coordinate robots within a subteam, while generating60

graph embeddings to encode the subteam context. Finally, at the low level, given these embeddings,61

STAF employs reinforcement learning to learn a navigation policy that controls each individual robot62

to adaptively maintain subteam formation, reach the goal position, and avoid collisions.63

Our primary contribution is the introduction of the novel STAF method to enable a new multi-robot64

navigation capability of subteaming and formation adaptation. The specific novelties include:65

• This work introduces one of the first problem formulations and learning-based solutions66

for subteaming and formation adaptation in multi-robot coordinated navigation. It enables67

new multi-robot capabilities, including subteam division, formation adaptation, and team68

recovery, allowing a team of robots to navigate complex environments in a coordinated69

manner, particularly narrow corridors where maintaining original formation is infeasible.70

• We introduce a novel hierarchical robot learning method that simultaneously integrates71

high-level deep graph cut for subteaming, intermediate-level graph learning for subteam72

coordination and adaptive formation control, and low-level individual robot control for73

collision-free navigation in complex environments.74

2 Related Work75

Hierarchical Learning for Robotics Hierarchical learning has shown promise in complex multi-76

robot tasks by providing a structured problem formulation that better aligns with multi-objective goals.77

It also enhances modularity in model design, which improves interpretability and enables clearer78

evaluation of each level. Applications include task allocation [24], maintaining communication [25],79

path planning [26, 27], and consensus reaching [28]. Typically, the lower level handles individual80

control tasks such as obstacle avoidance [29, 30]. The upper level focuses on team planning and81

coordination [31, 32, 33, 18]. However, applying hierarchical learning to formation adaptation82

and subteaming remains challenging due to the need for scalable team representations, dynamic83

adaptation, and efficient integration of formation control with flexible team reconfiguration.84

Coordinated Multi-Robot Navigation Learning-free methods rely on predefined formation strate-85

gies, such as leader-follower [15, 4, 34, 35] and virtual region methods [36, 37, 38, 39]. However,86

these rigid formations lack adaptability to environmental changes. Learning-based methods, such87
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Figure 2: Overview of STAF, which integrates three levels of robot learning within a unified hierar-
chical learning framework to enable coordinated multi-robot navigation.

as reinforcement learning (RL) [40, 41, 18, 19, 42, 41], address this limitation by optimizing ac-88

tions through environmental feedback. Graph neural networks (GNNs) enhance team coordination89

and communication [43, 17], enabling decentralized decision-making [16, 44]. These approaches90

have been applied in areas such as connected autonomous driving [45, 8], area coverage [46], and91

search-and-rescue missions [5]. However, none of these methods effectively address subteaming and92

formation adaptation in coordinated navigation, particularly in complex narrow corridors.93

Subteaming in Multi-Robot Navigation and Task Allocation Subteaming increases the complexity94

of coordinated multi-robot navigation as it involves splitting, merging, and reformation based on tasks95

or environments. Graph-based methods [20, 21, 47, 1] use graph partitioning and cutting to determine96

team division and merging, but often rely on explicit connectivity constraints. Leader-follower97

methods [48, 49, 15] apply predefined hierarchy-based strategies but lack flexibility in dynamic98

environments. Optimization-based approaches [50, 22, 23, 51] compute optimal assignments via99

mixed-integer programming. Heuristic-based methods [52, 53] use problem-specific heuristics to100

determine team formation and coordination strategies. However, these methods focus on team101

division alone and lack control over subteams or individual robots. See Appendix A for details.102

3 Approach103

Problem Definition We discuss our STAF method that enables new multi-robot capabilities of104

subteaming and formation adaptation for coordinated multi-robot navigation. An overview of STAF105

is illustrated in Figure 2. We represent a team of n robots using an undirected graph G = {V,E}.106

In the node set V = {v1,v2, . . . ,vn}, each node vi = {pi,gi,qi} consists of the attributes of107

the i-th robot, where pi = [pxi , p
y
i ] denotes its position, gi = [gxi , g

y
i ] denotes its goal position,108

and qi = [qxi , q
y
i ] denotes its velocities along x and y directions. The edge matrix E = {ai,j}n×n109

represents the spatial adjacency of the robots, where ai,j = 1, if the i-th robot and the j-th robot are110

within a radius; otherwise ai,j = 0. We further define the state of the i-th robot si = [pi,gi,qi, ci]111

as the concatenation of the robot’s attributes and the distance ci between the robot and its closest112

obstacle. We define the action of the i-th robot as ai = [vxi , v
y
i ], where vxi and vyi denote the robot’s113

velocities in the x and y directions, respectively.114

Our objective is to address the problems of subteaming and formation adaptation in the context of115

coordinated multi-robot navigation:116

• Formation Adaptation: The capability of a robot team or subteam to maintain a desired117

formation while dynamically adjusting their relative positions to safely and efficiently118

navigate through the unstructured environment toward their goal positions, particularly in119

challenging scenarios such as narrow corridors.120

• Subteaming: The capability of a robot team with a specific formation to autonomously121

divide into subteams with the same formation type when navigating environments too narrow122
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for the entire robot team. After successfully passing through, the subteams must merge back123

into the full team, restoring the original formation.124

High-Level Deep Graph Cut for Subteaming Given the graph G as the representation of the robot125

team, we introduce a new deep graph cut approach at the high level of STAF to enable subteaming.126

We compute the embedding of the robot graph as H = {hi} = ω(G), where hi is the embedding of127

the i-th robot and ω is a graph attention network [54]. We project each node into a representation128

space by calculating mi = Wvpi, where mi denotes the projected feature vector of the i-th node,129

and Wv denotes the weight matrix. Then, we compute the attention αi,j from the j-th node to130

the i-th node as αi,j =
exp(ReLu([Wami||Wamj ]))∑

k∈N(i) exp(ReLu([Wami||Wamk]))
, where ReLu denotes the rectified linear131

unit activation function, N (i) represents the set of adjacent nodes of the i-th node, || denotes the132

concatenation operation, and Wa represents the weight matrix. The attention αi,j is obtained by133

computing the similarity of the i-th node with its j-th adjacent nodes, followed by the SoftMax134

normalization. Then, the final embedding hi for the i-th node is computed through aggregating135

the embeddings of all its adjacent nodes as hi = Whmi +
∑

j∈N (i) αi,jW
hmj , where Wh is the136

weight matrix. We further utilize a multi-head mechanism [54] after the attention layers to enable the137

network to capture a richer embedding representation.138

Given H = {hi}, we formulate subteaming as a graph cut problem, which partitions the entire139

graph (representing the full team) into m subgraphs (representing subteams). In order to compute140

team division, we develop a classifier network τ(H) consisting of two fully connected linear layers141

followed by a SoftMax function, which outputs the team division results as Y = τ(H) = {yi,j}n×m,142

where yi,j is the probability of the i-th robot belonging to the j-th subteam, and m < n.143

To ensure that robots within the same subteam group together, i.e., each robot is adjacent to its144

teammates within the same subteam, we define a loss function that maximizes the adjacency of145

robots within each subteam as Y(1 −Y)⊤E, where Y(1 −Y)⊤ calculates the probability that a146

pair of robots belong to different subteams, and E encodes the adjacency of the robots. In addition,147

we aim to maintain balance in the sizes of robot subteams, encouraging each subteam to have148

the same or a similar number of robots. It can be mathematically modeled by a loss function149 ∑m
j=1

(∑n
i=1 yi,j −

n
m

)
. The term n

m calculates the optimal size of balanced subteams (e.g., when150

n = 10 and m = 2, each subteam would consist of 5 robots). Furthermore, we model the mission151

objective of reaching the goal position by minimizing the overall distance between the subteams152

and their respective goal positions. It can be mathematically defined as
∑m

j=1

∥∥∑n
i=1 yi,jpi∑n
i=1 yi,j

−153 ∑n
i=1 yi,jgi∑n
i=1 yi,j

∥∥
2
, where

∑n
i=1 yi,jpi∑n
i=1 yi,j

denotes the center position of the j-th subteam and
∑n

i=1 yi,jgi∑n
i=1 yi,j

154

denotes the center position of the goal for the subteam.155

The high-level component of STAF performs an unsupervised graph cut to enable team division for156

subteaming by minimizing the following objective function:157

Lst =

Subteam adjacency︷ ︸︸ ︷
Y(1−Y)⊤E+

Subteam balance︷ ︸︸ ︷
m∑
j=1

(
n∑

i=1

yi,j −
n

m

)
+

Subteam-goals distance︷ ︸︸ ︷
m∑
j=1

∥∥∥∥∑n
i=1 yi,jpi∑n
i=1 yi,j

−
∑n

i=1 yi,jgi∑n
i=1 yi,j

∥∥∥∥
2

(1)

which jointly accounts for subteam adjacency, subteam balance, and subteam-goal distances.158

Intermediate-Level Graph Learning for Multi-robot Formation Adaptation To enable adaptive159

multi-robot formation control, we develop a graph learning approach at the intermediate level of160

STAF, which coordinates multiple robots to maintain a specific formation while adapting it based161

on the surrounding environment. Given G that represents a team (or subteam) of robots along with162

the state si for each robot i, we develop a graph network ϕ to compute the embedding fi = ϕ(si,G)163

of the team state with respect to the i-th robot, which encodes the spatial relationships between the164

i-th robot with others in the team. The network ϕ uses a linear layer to project the robot state si to165

the individual embedding zi of the i-th robot by zi = Wzsi, where Wz is the weight matrix of the166

linear layer. Then, for the i-th robot, ϕ aggregates individual state embeddings of all other teammates167

through message passing to compute the team state embedding fi with respect to the i-th robot as168
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fi = Wfzi +
∑

j∈N (i) W
f (zj − zi), where Wf is the weight matrix. The team state embedding169

fi with respect to the i-th robot encodes not only its own states (captured in the first term), but also170

the relative spatial relationships with other teammates (captured in the second term), which facilitates171

the coordination of actions to maintain specific formations during multi-robot navigation.172

Robot teams and subteams may encounter scenarios, such as narrow corridors, where rigidly maintain-173

ing their formations prevents successful navigation. To enable formation adaptation, we implement174

a spring-damper model [55, 56] that dynamically adjusts the shape of the formation within the175

same type. This spring-damper model includes two components: (1) The spring component ensures176

that robot pairs maintain a balance between staying close enough to navigate narrow corridors and177

keeping a sufficient distance to prevent collisions, with the flexibility to adjust formation and enable178

adaptation. This spring component is modeled as |di,j − pi,j |, where di,j denotes the expected179

distance in the original formation and pi,j represents the actual distance between the i-th and j-th180

robots, computed as ∥pi − pj∥2. (2) The damper component prevents oscillation and overshooting181

of each robot during navigation by smoothing the relative velocities between pairs of robots, which is182

defined as qi,j = ∥qi − qj∥2. Combining these components, the spring-damper model for formation183

adaptation is mathematically defined as Radp =
∑

vi,vj∈V −λ|di,j − pi,j | − (1 − λ)qi,j , where λ184

is a hyperparameter that balances the importance of the spring and damper components. Radp is185

incorporated into the reward function, which is used to derive a loss function for training STAF.186

Low-Level Individual Robot Control for Navigation At the low-level of STAF, we introduce a187

navigation control network that outputs velocity commands as actions for each robot to reach its goal.188

Given the state si for the i-th robot, we compute its state embedding fi. We design the network ψ,189

which consists of two linear layers followed by the ReLU activation function, maps this embedding190

to an action as ai = ψ(fi). The network ψ is a part of the control policy πθ(ai|si), parameterized by191

θ, which is trained using the framework of reinforcement learning. To enable each robot to move192

toward its target position and reach the navigational goal, we design a reward function based upon the193

distance between the current positions of the robot and its goal position. To enable obstacle avoidance194

for safe navigation, we implement a reward function that imposes a penalty when a robot comes too195

close to nearby obstacles or other robots in the team. When robots are divided into subteams, and196

once all subteams pass through the narrow corridor into an open area that is large enough for the full197

team, the goal position of each individual robot is updated to align with the full team’s goal, thereby198

recovering the subteams back into the full team with the original formation.199

See Appendix B for details on STAF Training and Execution with their time complexity analysis.200

4 Experiments201

Experimental Setups We comprehensively evaluate our STAF approach across three setups: (1) a202

standard Gazebo simulation in ROS1, (2) a high-fidelity Unity-based 3D multi-robot simulator in203

ROS1, and (3) physical robot teams running ROS2. Each setup involves different numbers and types204

of robots arranged in formations such as circle, wedge, and line. In all scenarios, the environment205

includes narrow corridors, which require the full robot team to divide into subteams that adapt their206

formation to pass through. Afterward, the subteams regroup into the original full-team formation. In207

simulation, robot poses and obstacles are obtained from Gazebo and Unity. In real-world experiments,208

robots use a SLAM approach [57] for state estimation and mapping. See Appendix C for details on209

approach implementation and training. All video demonstrations are available on our project website.210

We implement the complete STAF approach referred to as STAF-full. The full team divides into211

subteams to navigate through narrow environments, and after passing through, the subteams regroup212

into the full team to its original formation. To analyze the performance of the subteams, we refer213

to the subteams as STAF-sub#, e.g., STAF-sub1 and STAF-sub2. For comparison with STAF, we214

further implement two previous methods for multi-robot coordinated navigation, including: (1) A215

Leader and Follower method (L&F) [15] that one of the robots is designated as the “leader robot”216

that leads the movements of the other “follower robots” in the team while maintaining the formation.217

5



Table 1: Quantitative comparison of STAF and Previous Methods from Gazebo simulations in ROS1.
Method Circle Formation Wedge Formation Line Formation

SR (%) TT (sec) σ < 0.5 σ < 0.1 σ < 0.01 SR (%) TT (sec) σ < 0.5 σ < 0.1 σ < 0.01 SR (%) TT (sec) σ < 0.5 σ < 0.1 σ < 0.01

DGNN [18] 100.00 68.70 60.41 58.91 58.91 100.00 82.70 47.85 42.33 41.92 100.00 72.61 27.90 20.16 20.16
L&F [15] 40.00 27.40 67.28 64.54 62.69 70.00 26.50 69.70 62.11 59.47 60.00 30.10 63.76 55.89 55.89

STAF-full 100.00 102.10 87.79 80.12 80.12 100.00 69.30 80.52 80.51 80.50 100.00 111.50 91.45 80.06 78.93

Figure 3: Qualitative results from Gazebo simulations on subteaming and formation adaptation.

(a) Circle formation (b) Wedge formation (c) Line formation

Figure 4: Movement trajectories of ten robots navigating a narrow corridor with different formations.
In Figure 4(a) to 4(c), the first subfigure displays two subteams (red and blue) during team division,
navigation with formation adaptation, and regrouping. The second and third subfigures show subteam
trajectories, with each robot’s path in a distinct color and gray dashed lines indicating obstacles.

(2) Decentralized GNN (DGNN) [18] that built upon a hierarchical learning framework to generate218

velocity controls for each individual robot for navigation, without considering team-level formations.219

To quantitatively evaluate and compare with other methods, we employ three metrics, including:220

(1) Successful Rate (SR) is defined as the proportion of the robots within the full team that suc-221

cessfully reach goal positions without collisions. (2) Travel Time (TT) is defined as the total222

time used by the full team to reach the goal position. (3) Contextual Formation Integrity (CFI)223

is defined as the real-time adherence of the robots to their designated formation, given a shape224

threshold that defines the strictness of the formation. The CFI metric combines concepts of thresholds225

and uncertainty, which are commonly applied in computer vision [58]. It is formally defined as226

w
(
1− σ−1 min (|r − (η + σ)| , |r − (η − σ)|)

)
+ (1− w)ϵ. The CFI ∈ [0, 1] evaluates how effec-227

tively a robot team utilizes corridor gap and maintains formation. It combines two terms: the first228

measures spatial efficiency using the team’s maximum radius r, corridor width η, and uncertainty σ,229

where smaller σ indicates stricter formation requirements; the second ϵ ∈ [0, 1] evaluates the integrity230

of the team shape. A weighting factor w balances the two terms, with higher CFI values indicating231

better performance. See Appendix D for details on CFI and its calculation of different formations.232

Results in Multi-Robot Simulations The qualitative results in the Gazebo simulation are shown233

in Figure 3. L&F gets stuck in the narrow corridor due to the lack of subteaming and formation234

adaptation. In contrast, our method autonomously divides the team, enabling each subteam to adapt235

formations and reach the goal; the first subteam starts moving, followed by the second, and they236

eventually merge into the full formation. Notably, for wedge formations, team division prioritizes237

goal-distance objectives instead of maximizing connectivity, resulting in more compact subteams.238

We visualize the trajectories of a team of 10 robots navigating in different formations, as shown in239

Figure 4. The visualization reveals subteaming behaviors (indicated by subteams in red and blue240

colors), including team division and regrouping. Additionally, formation adaptation of each subteam241

occurs when navigating through narrow corridors (indicated by the individual robot trajectories).242

These results show the effectiveness of STAF in enabling both subteaming and formation adaptation.243
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Table 2: Quantitative results of two sub-
teams from Gazebo simulations in ROS1.

Subteam Formation Metrics
SR (%) TT (sec) σ < 0.5σ < 0.1σ < 0.01

STAF-sub1
Circle 100.00 84.80 81.56 71.69 70.59
Wedge 100.00 58.80 77.22 71.79 69.86
Line 100.00 78.51 91.13 79.53 77.43

STAF-sub2
Circle 100.00 59.50 87.72 82.67 80.11
Wedge 100.00 46.80 80.99 80.15 75.79
Line 100.00 90.06 91.78 81.74 80.43

The quantitative results are shown in Table 1. DGNN244

performs the worst, particularly in the CFI metrics, as245

it lacks formation control. L&F uses formation con-246

trol and performs better but has only a 40% success247

rate, as it lacks subteaming and formation adaptation,248

which makes narrow corridor navigation difficult. Our249

method outperforms both by addressing these limita-250

tions, which achieves a 100% success rate. Although251

STAF yields slightly longer travel times, this is expected due to its more complex navigation strategy.252

Subteam performance in Table 2 shows a 100% success rate across all formations. STAF maintains253

formation integrity above 87%, 80%, and 91% under the threshold σ < 0.5 for circle, wedge, and line254

formations, respectively. These results highlight the effectiveness of STAF in enabling coordinated255

navigation through subteaming and adaptive formation control in complex environments.256

Figure 5: Qualitative results from Unity3D simulations in ROS1 using varying numbers of differential-
drive Warthog robots in three formations while navigating a long, unstructured field environment.

Figure 6: Qualitative results from real-world experiments in both indoor narrow spaces and outdoor
uneven terrain, using varying numbers of Limo robots running ROS2 and communicating via Wi-Fi.

Beyond the Gazebo simulation, we further use a high-fidelity Unity3D simulator in ROS1, which257

simulates outdoor field environments with narrow pathways and bridges. Instead of using holonomic258

robots as shown in the Gazebo simulation, we use differential-drive Warthog robots and convert259

the linear velocity in the action ai into wheel velocities to follow the same trajectory. This setting260

introduces new challenges, which require the robot team to navigate complex, long curved paths261

that demand continuous formation adjustments, as well as extremely narrow areas that demand262

division into more than two subteams. As illustrated in Figures 5, our STAF approach successfully263

addresses these challenges by dividing a full team into subteams, adapting actions of differential-drive264

subteams to navigate, and regroup after subteam traversal. For line formation with 9 robots, STAF265

can dynamically divide into three subteams to navigate a corridor too narrow for groups larger than 3.266

Case Study on Physical Robot Teams We validate STAF on real-world case studies using differential-267

drive Limo robots with caterpillar tracks, each equipped with an onboard Intel NCU i7 and running268

ROS2 with Wi-Fi-based team communication. The real-world experiments are conducted both269

indoors and outdoors, as shown in Figure 6. Our method enables teams of 6 to 8 robots to divide270

into subteams and adapt formations to smoothly navigate narrow indoor spaces, including doorways,271

hallways, and exits. In outdoor experiments on unstructured terrain such as passages between bollards,272

scattered trees, and roadblocks, the results demonstrate the strong adaptability of our approach to273

unknown environments. Subteaming and formation adaptation are effectively performed even on274

snowy and uneven terrain, where wheel slippage introduces significant action uncertainty. Additional275

Unity3D and real-world qualitative results with more timesteps are provided in the Appendix E.276

5 Discussion277

Ablation Study on Subteam Division We conduct an ablation study to evaluate the role of each278

component in the objective function defined in Eq. (1) for team division. Figure 7(a) shows that279

7



(a) ST-B (b) ST-A (c) ST-G (d) w/o ST-B (e) w/o ST-A (f) w/o ST-G

Figure 7: Ablation study that analyzes the impact of subteam division components: subteam balance
(ST-B), subteam adjacency (ST-A), and subteam-goals distance (ST-G).

(a) 4 robots (b) 6 robots (c) 7 robots (d) 8 robots (e) CFI across team sizes

Figure 8: Quantitative results indicate STAF’s generalizability to different team sizes. Figures (a)-(d)
show the trajectories of 4 to 8 robots in circle formations to navigate a narrow corridor. Figure (e)
presents the variation in CFI values across different team sizes and σ values.

optimizing only the balance term evenly splits 12 robots into 3 subteams. Figure 7(b) shows that only280

maximizing adjacency leads to all robots being assigned to the same subteam. Figure 7(c) shows that281

only minimizing the goal-distance aligns subteams toward their goals (in the upper right). In addition,282

we remove each component individually to assess its impact. Figure 7(d) shows unbalanced team283

division without the balance term. Figure 7(e) results in uncompact subteams without the adjacency284

term. Figure 7(f) shows subteams misaligned with goals, which leads to inefficient navigation. These285

results further indicate the effectiveness and importance of enforcing subteam balance, maximizing286

adjacency, and minimizing subteam-goals distance for robot team division.287

Generalizability to Different Team Sizes We evaluate the generalizability of STAF to different288

team sizes by varying the number of robots. Figures 8(a)-8(d) present the qualitative results on289

formation adaptation for teams of 4, 6, 7, and 8 robots in circle formation, which validate STAF’s290

generalizability across team sizes. Figure 8(e) presents the quantitative results using the CFI metric,291

which shows 87% formation integrity for 4 robots under σ < 0.03, and at least 80% for 8 robots.292

(a) 2 subteams (b) 3 subteams (c) 4 subteams
Figure 9: Qualitative results indicate STAF’s gen-
eralizability to different numbers of subteams.

Generalizability to Different Numbers of Sub-293

teams We evaluate STAF’s generalizability in294

dividing the team into varying numbers of sub-295

teams. As shown in Figure 9, STAF effectively296

handles divisions into 2, 3, and 4 subteams. Fig-297

ure 5 contains a scenario where a nine-robot line298

formation splits into three subteams to navigate299

a corridor too narrow for groups larger than four.300

See Appendix F for STAF’s Robustness to Noise and Applicability to Different Robot Platforms.301

6 Conclusion302

In this paper, we propose STAF for coordinated multi-robot navigation in complex scenarios. STAF303

is built upon a unified hierarchical learning framework, including a high-level deep graph cut for304

dynamic team division, an intermediate-level graph learning for team coordination with adaptive305

formation control, and a low-level RL policy for individual robot control. Results from comprehensive306

experiments show that STAF enables new multi-robot capabilities for subteaming and formation307

adaptation, and significantly outperforms existing methods on coordinated multi-robot navigation.308
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7 Limitations309

Our approach presents several limitations that suggest directions for future research. First, although310

STAF’s intermediate and low levels are executed in a decentralized fashion, STAF’s high level for311

team division is executed in a centralized fashion. One direction for future research is to decentralize312

the high-level team division, such as by replacing the current global graph cut optimization with313

a distributed consensus algorithm (e.g., gossip [59] or max-consensus [60]). These decentralized314

methods would enable each robot to determine its subteam based upon the information shared by its315

teammates through broadcasting, and iteratively reach a consensus and converge to a stable subteam316

assignment through negotiation. Second, the alternating training algorithm we use, which iteratively317

trains the high-level and joint intermediate-low levels, is considered a limitation, as it may lead318

to suboptimal integration of these levels and difficulties with training error propagation. In the319

future, we plan to integrate the high-level graph cut together with the joint intermediate-low level320

training into an end-to-end training algorithm, where the training error from the low level will be321

propagated not only to the intermediate level but also to the high level, which enables updates to the322

network parameters across all three levels. To achieve this, we will adopt a centralized training with323

decentralized execution strategy, where all levels of the hierarchy can leverage global information324

during training, while ensuring decentralized execution during deployment. The third limitation325

is that the number of subteams, as a hyperparameter, is decided manually. A future direction is to326

dynamically and adaptively determine this hyperparameter by selecting the minimum number of327

subteams such that the smallest formation of each subteam can successfully navigate through the328

narrowest corridor in the environment. The width of a corridor can be identified either by analyzing329

the environment map (using a prior map or built by a SLAM method) or through real-time robotic330

sensing.331
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Appendix511

A Extended Related Work512

In this section, we will first review existing techniques for learning-free coordinated multi-robot513

navigation. Then, we will review previous methods for subteaming in the areas of multi-robot514

navigation and task allocation. Finally, we present the state-of-the-art works on hierarchical learning515

for robotics.516

A.1 Learning-Free Coordinated Multi-Robot Navigation517

We review existing methods from two main perspectives: the multi-robot team formation and the518

theoretical perspective to enhance coordinated efficiency. From the multi-robot team formation angle,519

prevalent configurations include the leader-follower structure, where follower agents are programmed520

to maintain group behavior by following a leader agent [15, 4, 34, 35]. Additionally, virtual region521

methods that allow robot teams to adjust their formation within specified virtual areas are thoroughly522

explored [36, 37, 38, 39]. However, these formations are often rigid and lack the flexibility needed to523

adapt to complex environments that require dynamic formation changes.524

From the theoretical perspective, classic methods of coordinated multi-robot navigation are catego-525

rized into three groups: traditional planning methods, game-theoretical approaches, and optimization-526

based techniques. Traditional planning methods include algorithms, such as A∗ and its variants527

[61], rapidly exploring random trees (RRT) [12], and probabilistic roadmap (PRM) [62]. Game-528

theoretical approaches model multi-robot navigation as cooperative games for path planning [13, 14].529

Optimization-based methods aim to optimize various objectives in order to coordinate multiple530

robots during navigation, such as identifying traversable areas to prevent collisions [63, 64], main-531

taining communication [15], maximizing area coverage [65], and addressing hierarchical quadratic532

programming (HQP) problems for cooperative tasks [11, 66]. Traditional methods in coordinated533

navigation are primarily based upon heuristic searching and typically incur substantial computational534

costs. Additionally, none of these previous classic methods effectively address subteaming and535

formation adaptation in the context of coordinated navigation, particularly in complex scenarios such536

as traversing narrow corridors.537

A.2 Subteaming in Multi-Robot Navigation and Task Allocation538

Integrating subteaming with coordinated multi-robot navigation introduces additional complexity be-539

yond the standard multi-robot coordination, which requires team splitting, merging, and reformation in540

response to environmental and task constraints. Existing methods can be broadly categorized into four541

groups, including graph-based, leader-follower-based, optimization-based, and heuristic-based meth-542

ods. Graph-based methods [20, 21, 47, 1] use graph partitioning and graph cut techniques to determine543

how to divide and merge teams, typically relying on explicit connectivity constraints. Leader-follower544

methods [48, 49, 15] employ predefined hierarchy-based motion strategies, where a subset of agents545

leads and others follow, limiting flexibility in dynamic environments. Optimization-based methods546

typically use mixed-integer programming [50, 22, 23, 51] to compute optimal assignments and motion547

plans. Heuristic-based methods [52, 53] offer computationally efficient alternatives by leveraging548

problem-specific heuristics to determine team formation and coordination strategies. However, these549

methods generally focus on team division alone, without the capability of controlling the subteams or550

individual robots, which makes them unsuitable for addressing coordinated navigation.551

A.3 Hierarchical Learning for Robotics552

Recently, learning-based methods have gained significant attention for improving coordinated naviga-553

tion in multi-robot systems. Reinforcement learning (RL) approaches have shown promising results in554

enabling robots to adapt to environmental changes [40, 41]. However, single-level RL methods often555

struggle with convergence in complex scenarios. Graph neural networks (GNNs) have been used to556
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enhance team coordination and communication [43, 17], supporting decentralized decision-making557

[16, 44]. Multi-agent reinforcement learning (MARL) further improves coordinated navigation by558

training robots to cooperate effectively [18, 19, 42, 41]. These learning-based approaches have been559

successfully applied in areas such as connected autonomous driving [45, 8], area coverage [46], and560

search-and-rescue missions [5].561

Hierarchical learning attracts increasing attention to address this issue for complex multi-robot562

tasks, such as solving combinatorial optimization for multi-robot task allocation [24], maintaining563

communication that ensures connectivity among robots [25], multi-robot path planning [26, 27] and564

consensus reaching [28]. Specifically, the lower level policy aims to optimize individual robot control,565

such as enabling obstacle avoidance [29, 30]. The upper level focuses on multi-robot planning and566

coordination, such as selecting sub-goals through goal-based planning [31], dividing exploration567

areas using dynamic Voronoi partitions [32], facilitating obstacle avoidance [33] and communication568

between robots [18].569

These methods leverage hierarchical policy to optimize both high-level task planning and low-level570

motion control simultaneously, which achieves promising performance compared to traditional571

methods that rely on predefined rules and explicit environment representations. However, applying572

hierarchical RL to formation adaptation and subteaming remains an open challenge due to the need573

for scalable representations of team structures, dynamic adaptation to changing environments, and574

efficient integration of formation control with flexible team reconfiguration.575

B STAF Training and Execution576

B.1 STAF Training577

To train STAF as a three-level hierarchical learning model, we design an alternating training algo-578

rithm that iterates between using unsupervised learning to train the high level for sub-teaming and579

using Proximal Policy Optimization (PPO) [67] to jointly train the intermediate level for formation580

adaptation and the low level for individual robot control.581

Specifically, the high-level training receives a 2D occupancy map of the environment (e.g., built582

using a SLAM approach [57]), as well as the starting and goal positions of the robots within the583

map as input. The high level is trained using ADMM as the optimization solver [68] by deriving584

the gradient of the unsupervised loss function in Eq. (1) to update the weights Wa and Wh of the585

deep graph cut network τ for subteam division, which considers subteam adjacency, subteam balance,586

and subteam-goal distance. In the same iteration, we fix the high-level model once its training is587

complete, and we utilize PPO to jointly train the intermediate and low levels of STAF. We design the588

overall reward as a weighted summation of the coordination reward in STAF’s intermediate level for589

formation adaptation, and the navigation reward and obstacle avoidance reward for individual robot590

control. These rewards are used to compute the advantage function Aπold(si,ai), which quantifies591

how much better taking action ai in state si is compared to the old policy πθold(si,ai). Then, a loss592

value is computed by aggregating the differences for all robots between the output of the updated PPO593

policy πθ(si,ai) and the old policy πθold(si,ai). To prevent instability in training due to large policy594

updates, a clipping function clip(1− δ, 1 + δ) is used to constrain the ratio between the updated and595

old policies, ensuring that training stays within a stable trust region defined by δ. Integrating the596

components above, the loss function can be expressed as:597 ∑
vi∈V

E
si,ai∼d

πθold

[
min

(
πθ(ai|si)
πθold(ai|si)

Aπold(si,ai), clip
(

πθ(ai|si)
πθold(ai|si)

, 1− λ, 1 + λ

)
Aπold(si,ai)

)]
(2)

where dπθold represents the probability of encountering a state si and performing an action ai while598

following the old policy θold, and E is the expectation over dπθold for all robots. Gradients computed599

from this objective are used to train the individual robot navigation policy πθ at the low level, and600

backpropagated to the intermediate level to update weights Wf of the graph network ϕ for formation601

adaptation.602
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B.2 STAF Execution603

During execution, STAF performs centralized planning with decentralized execution. STAF assumes604

the 2D occupancy map of the environment along with the starting and goal positions of the robots as605

input, just as in training. The deep graph cut at the high level of STAF is performed in a centralized606

manner (although decentralization is possible, as discussed in Section 7): Each robot broadcasts its607

state via wireless communication (e.g., Wi-Fi), and a designated robot collects the states from all its608

teammates to compute the subteam assignments. After subteam division, formation adaptation at609

STAF’s intermediate level is performed in a decentralized manner. Through the same broadcasting610

mechanism via Wi-Fi, each robot can determine the relative positions of its teammates, which enables611

the robot to dynamically adjust its own position in relation to others to maintain and adapt the612

designated formation. Then, each robot executes velocity commands derived from the individual613

robot control policy at the low level of STAF.614

B.3 STAF Time Complexity Analysis615

Training time complexity is dominated by O(n2), where n is the number of robots. The high level616

has an O(HLhThDn
2) complexity, where H is the number of attention heads of the transformer617

encoder with Lh layers in the upper-level GNN, Th is the number of graph training epochs, and D is618

the number of samples for network training. The intermediate level has an O(LmTpn
2) complexity,619

where Lm is the number of layers in GNN, and Tp is the number of training iterations using PPO.620

The low-level training has an O(Tp(Bn
2 + IBn)) complexity, where B is the number of PPO’s621

rollouts to interact with the environment in each iteration, and I is the number of PPO training622

epochs. O(Bn2) is for computing the advantage function and O(IBn) is for updating the policy.623

Combining all terms, the overall complexity for training is O(HLhThDn
2 + LmTpn

2 + Tp(Bn
2 +624

IBn)). Execution time complexity is dominated by O(n2). The complexities of the three levels625

are O(HLhn
2), O(Lmn

2), and O(n), respectively. Thus, the overall execution complexity is626

O(HLhn
2 + Ln2m + n). We will add a new subsection in the approach section to discuss details of627

the time complexities.628

C Experiment Setup629

To implement STAF, the edges in the robot team graph are constructed by connecting the nearby630

robots within a radius setting to 2 meters. STAF’s high-level deep graph cut network contains631

one linear layer with Wv setting to the dimension of 2 × 32 and three transformer layers with632

the parameter Wa and Wh setting to the dimension of 32 × 32. The intermediate-level GNN for633

formation adaptation contains one encoder with Wz setting to the dimension of 6 × 64 and one634

GNN layer with Wg setting to the dimension of 64 × 64. The hyper-parameter λ = 0.6 in the635

spring-damper model of STAF is to balance spring and damper force.636

We generate synthetic data to train our STAF approach. Specifically, given a robot team formation,637

we randomly generate the positions of the robots within the formation. In total, we collect 10, 000638

data instances to train our high-level network. The high-level network is trained for 100 epochs, while639

the adaptive formation control policy, involving both the intermediate-level and low-level neural640

networks, is trained over a total of 800 epochs. This alternating training of the high-level and joint641

intermediate-low-level networks continues until convergence.642

D Examples of Computing the CFI Evaluation Metric643

To evaluate formation adaptation, we introduce Contextual Formation Integrity (CFI) metric in our
paper, which is mathematically defined as:

w
(
1− σ−1 min (|r − (η + σ)| , |r − (η − σ)|)

)
+ (1− w)ϵ

where the first term assesses the team’s efficiency in utilizing the corridor gap, where r is the robot644

team’s maximum radius, η denotes the corridor width with a safety margin, and σ is a threshold with645
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Figure 10: Example scenarios used to comprehensively evaluate and validate out STAF approach in
multi-robot simulations as well as using real physical robots in both indoor and outdoor environments.

smaller values imposing stricter formation requirements. CFI’s second term ϵ ∈ [0, 1] evaluates the646

integrity of the team shape. CFI combines these two terms to evaluate how effectively a robot team647

uses the corridor space and maintains its formation, with the balance determined by the coefficient w.648

The metric CFI ∈ [0, 1], where higher values indicate better performance. In our experiments, we set649

w = 0.5 to treat the gap usage and the formation integrity equally important. Additionally, we set σ650

to twice the width of the robot used in the corresponding experiments. For a number of n robots, the651

ϵ in CFI is computed as follows:652

• Circle formation: ϵ = 1− 1
n

∑n
i=1

θi
(n−2)×180

n

, where θi represents the interior angle of the653

triangle with the i-th robot as the vertex, and (n−2)×180
n is the interior angle of the polygon,654

approximating a circle when the team has n robots.655

• Wedge Formation: ϵ = 1− 2|Ll−Lr|
Ll+Lr

− |2Lm−Lb|
Lb

, where Ll, Lr, Lm, Lb represent the lengths656

of the left, right, middle, and base sides of the isosceles triangle formed by the robots.657

• Line Formation: ϵ = 1− 1
n−1

∑n−1
i=1

Li,i+1

L , where Li,i+1 represents the distance between658

neighboring robots, and L denotes the full width of the robot team. The term ϵ measures the659

relative deviation from the ideal line formation.660
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(a) A team of ten Warthog robots with a circle formation navigates through a narrow corridor on uneven terrain.

(b) A team of ten robots in a wedge formation traverses a progressively narrowing corridor between buildings.

(c) A team of nine robots in a line formation navigates through multiple narrow passages.

Figure 11: Qualitative results on subteaming and formation adaptation during coordinated multi-robot
navigation using a high-fidelity Unity3D simulations in ROS1. The experiments adopt different
numbers of differential-drive Warthog robots that maintain circle, wedge and line formations while
traversing an unstructured outdoor field environment

E Extended Experiments661

We comprehensively evaluate our STAF approach across diverse scenarios, with several representative662

examples shown in Figure 10. Due to space limitations, additional qualitative results with extended663

timesteps from Unity3D simulations, and real-world indoor and outdoor experiments are provided in664

the appendix, highlighting the progression of subteaming and formation adaptation over time.665

Case Studies on High-fidelity Unity 3D Simulations As illustrated in Figures 11(a) and 11(b), our666

STAF approach successfully divides the full team into subteams and smoothly adjusts the actions of667

differential-drive robots to navigate complex and curved trajectories toward the goal. This validates668

the effectiveness of our method in handling both formation adaptation and subteaming in challenging669

environments. Figure 11(b) specifically demonstrates subteaming and formation adaptation in a670

wedge formation while navigating a progressively narrowing corridor between buildings. Our subteam671

division emphasizes subteam-goal distance, resulting in more compact subteam formations, as shown672

at 8 seconds. By 46 seconds, the formation adaptation capability of the two subteams becomes clearly673

evident. In addition, Figure 11(c) shows that our approach dynamically divides the team into three674

subteams, enabling successful navigation through the narrow corridor and subsequent regrouping.675

This further demonstrates the capability of STAF to handle subteaming beyond two subteams in676

extremely constrained scenarios.677

Case Study Validation on Physical Robot Teams We validate our STAF method through case678

studies involving real physical multi-robot teams, using differential-drive Limo robots equipped679
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(a) A team of eight physical robots with a circular formation navigates through a narrow doorway in a hallway.

(b) A team of six robots with a wedge formation navigates through a narrow exit.

(c) A team of six robots in a line formation navigates through a slightly wider but still confined doorway.

Figure 12: Qualitative results of coordinated multi-robot navigation, including team division, for-
mation adaptation, and team recovery, using varying numbers of differential-drive Limo robots that
maintain circle, wedge, and line formations across different indoor scenarios.

with caterpillar tracks. The experiments are conducted in both real-world indoor and outdoor680

environments, and we present six representative scenarios in the paper, each highlighting various681

real-world challenges. The indoor environments involve navigating constrained spaces, such as a682

narrow doorway in a hallway, a tight exit from an indoor area to a partially open outdoor space, and a683

slightly wider but still confined corridor. The outdoor experiments are conducted on unstructured684

terrain, including a narrow passage between two concrete security bollards, a forest-like environment685

with narrow corridors surrounded by scattered trees and obstacles, and a pathway with boundaries686

marked by two sticks blocking vehicle access.687

The experimental results using real robot teams in indoor environments are shown in Figure 12(a).688

Our approach allows 8 Limo robots to dynamically divide into 2 subteams and successfully navigate689

through a narrow doorway with formation adaptation. In the scenarios of narrow hallway and tight690

exit, as shown in Figures 12(b) and 12(c), our approach continues to effectively facilitate subteaming691

and formation adaptation within a robot team with 6 robots, ensuring smooth navigation through692

constrained spaces in the real world. The experimental results using Limo robot teams in outdoor693

environments are shown in Figures 13(a), 13(b) and 13(c). The results indicate a strong adaptation694

capability of our approach to unknown environments; subteaming and formation adaptation can well695

be performed on snowy and uneven terrain, where wheel slippage poses large action uncertainty. By696

effectively coordinating robots within a team or subteam, our method achieves stable and adaptive697

navigation, ensuring efficient team coordination even in highly uncertain and unknown environments.698

F Extended Discussion699

In the main paper, we analyze the characteristics of our STAF approach, focusing on its general-700

izability to different team sizes and numbers of robots, and include an ablation study on subteam701

division. Here, we demonstrate the approach’s robustness to noise and its applicability to different702

robot platforms. While circle formations are included to highlight the characteristics of our approach,703

we have conducted additional experiments using other formations and observed similar results.704
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(a) A team of eight physical Limo robots with a circle formation traverses a narrow passage between two
concrete security bollards.

(b) A team of six robots in a wedge formation navigates through a forest-like environment with narrow corridors
surrounded by scattered trees and obstacles.

(c) A team of six Limo robots in a line formation navigates through a narrow pathway with boundaries marked
by two sticks blocking vehicle access.

Figure 13: Qualitative results of team division, formation adaptation, and team recovery during
coordinated navigation using varying numbers of differential-drive Limo robots that maintain circle,
wedge, and line formations across different unstructured outdoor environments.

Robustness in Subteam Division to Noise705

(a) Normal situation (b) Noisy situation

Figure 14: STAF’s robustness in graph-cut-based
subteam division to noise.

In order to analyze STAF’s robustness to noise706

in subteam division, we first present the graph707

cut performance in Figure 14(a) under normal708

conditions. These conditions are defined as the709

experimental setups where robot positions are710

uniformly distributed along a circular edge, with711

no noise introduced. Our STAF approach clearly712

achieves an even division of the robot team into713

two subteams, ensuring maximum adjacency714

within each subteam and minimum distance be-715

tween subteams and their respective goals. Then, to simulate noise in robot state estimation, which is716

often modeled as Gaussian [69], we add standard Gaussian noise to the robot positions, as illustrated717

in Figure 14(b). Despite the added noise, our approach preserves a consistent subteam division, which718

indicates the robustness of our STAF approach against positional perturbations.719

Applicability to Different Robot Platforms720

Figure 15: Applicability of STAF to a team of
holonomic robots for coordinated navigation, sup-
ported by an external tracking system (OptiTrack).

We further demonstrate the applicability of our721

STAF approach to different robot types. In high-722

fidelity Unity3D simulation in ROS1, we test it723

on differential-drive Warthog robots, while real-724

world experiments involve Limo robots. Ad-725

ditionally, we assess its performance with 10726

holonomic-drive robots. As illustrated in Figure727

15, our STAF approach successfully enables a728

new team of holonomic robots to perform sub-729

teaming and adaptive formation control to navigate through narrow corridors, with the support of an730

external tracking and state estimation system using OptiTrack.731
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